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The quantum mechanical relaxation rate for a high-frequency vibrational mode is evaluated for a
one-dimensional model system having two diatomic molecules involved in a collinear collision. The thermally
averaged rate is obtained as an integral over energies for the relative translation of the two molecules. These
calculations show that energies several tildg$ make the largest contributions to the rate. Several orders

of magnitude of cancellation due to phase interference is found in the evaluation of the coupling matrix
elements between the initial and final states, and this is one of the main factors leading to the very small
value for the relaxation rate. The region near the classical turning point in the relative translational motion of
the colliding molecules dominates the calculation of the contribution to the rate at each energy. Calculations
using low-order expansions of the translational potential energy and the interstate coupling about this turning
point provide good approximations to the exact quantum mechanical rate. This suggests a possible method
for performing calculations of the rate by means of realistic simulations of liquid systems.

I. Introduction isms132to evaluate the autocorrelation function form of the

o ] ) ) vibrational relaxation rate expressfn®’ or expressions related
Vibrational relaxation plays an important role in the energy ¢ tnjg38.39

flow and dissipation in many physical processes. The accurate
evaluation of the energy relaxation rate for high-frequency
vibrational modes in liquids has proven to be a difficult problem.
Early efforts on this problem were motivated by work in solids

The relaxation rates for high-frequency vibrations are very
small. For instance, the experimentally measured rate for the
vibrational relaxation of @in the liquid is 4x 10710 ps™1 at
80 K0 This very slow rate results numerically, at least in part,
§rom the large amount of phase cancellation in the integrations
involved in the rate expression. This is evident, for instance, in
the evaluation of the Fourier transform in the time dependent
autocorrelation function formulation of the probléAi2 In
order to better understand the nature of the phase cancellation
and gain insight into methods for organizing the calculation of
the rate constant in a manner that accurately accounts for this
important aspect of the problem, a one-dimensional model for
the vibrational relaxation in a collinear collision of two identical
diatomic molecules is studied. The use of a one-dimensional
model allows for the exact evaluation of the quantum mechanical
thermally averaged rate expression for this system. The results
obtained show that the phase cancellation reduces the interaction
integral by over 5 orders of magnitude compared with the
maximum value of the integrand. Since the rate expression
contains the square of the interaction integral, the rate for this
model system is reduced by many orders of magnitude by phase
interference. This phase cancellation is entirely accounted for
in the evaluation of the contribution from each energy to the
thermally averaged rate, and the resulting energy dependent
— - contribution is a smoothly varying, nonoscillatory function of
"'Part of the special issue "Robert E. Wyatt Festschrift” energy. The thermally averaged rate is found to be dominated
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interaction between the relaxing vibrational mode and a
phonon batA: 19 Another approach considered the relaxation
as being the result of independent binary collisions between
molecules, in which the transition probability per collision is
obtained from calculations or experimental data, and a
collision frequency is estimated from kinetic or hydrodynamic
consideration$~16 Hydrodynamic model<-'® and classical
simulations with the vibration coupled to a stochastic Fa#t
have also been employed in calculations of vibrational
relaxation rates. More recent work has employed the time
domain form of Fermi’s golden rule, expressing the relaxation
rate as the Fourier transform of the autocorrelation function of
the force on the vibrational coordinates due to interactions
with the other particles in the liqui#%2° In that work, the
Fourier transform of the classical autocorrelation function is
multiplied by a factor that approximately corrects for the
quantum nature of the problem, increasing the relaxation rate
over that obtained using just the classical autocorrelation
function26-30 Other approaches have used semiclassical formal-
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Itis found in these fully quantum calculations that the magnitude 19
of the contribution from each energy to the thermally averaged
rate expression is largely determined by the behavior of the 0.8 1
interaction between the molecules in the region around the 06 4
classical turning point in the translational motion of the colliding o
partners. This feature of the problem suggests a possible way = 04 -
to organize realistic Monte Carlo simulations of the relaxation
rate in liquids. 0.2 1
0 : : ; : .
Il. Theory 0 500 1000 1500 2000 2500
The one-dimensional model system considered in this work E

contains a homonuclear diatomic molecule in the first excited Figure 1. (2mh2)Vi2e FEp x 108 is plotted whereE is the
vibrational state undergoing a collinear collision with another translational energy in Kelvin of the system before the collisionand
molecule of the same type. If the magnitude of the asymptotic is the asymptotic relative momentum of the particles in the final state
- . . S (after the vibrational transition).
relative momentum of the two particlesgsbefore the collision,
the rate constant for relaxation from vibrational statéo The interaction potential between the particles is taken to be
vibrational state is given by Fermi's golden rufé as
V(r) = 4e(olr)*? (5)
ks = 2V, Ot ® ons inthi s the di
—t = T Vit 1P in most calculations in this work, wheras the distance between
the pair of atoms, one from each molecule, which are closest
wherepsstis the density of final states at the energy correspond- to each other. The parameters= 38 K (degrees Kelvin) and
ing top; and the superscript b indicates that the matrix elements o = 320 pm, which are reasonable values for the repulsive
are taken over quantum states for the translational motion usinginteraction between £molecules* are employed in this work.

particle-in-the-box normalization. The density of stategdE The vibrational transition energy is taken to h& = 2273.8
is given bypsst = dny/dE = (mVpy)L/rh) wheremiis the reduced K, and a reduced mass of= 16 u is employed. The distance
mass for the relative motion of the two particlésis the box r is related to the distance between the centers of mass of the

length, andp is the asymptotic relative momentum of the two molecules byR =r + r4/2 + ry/2, wherer, andr;, are the bond
particles in the final state. If the box normalization factors are lengths for the two molecules. In this work, molecule a is
factored out of the interaction matrix elemerw#b,) = (2/L)Vy, initially in the first excited vibrational state, and the rate at which
eq 1 can be rewritten as this molecule relaxes to its vibrational ground state is calculated.
Resonant transfer of the vibrational excitation energy to the other
_ 8m 2 molecule is ignored, and the bond length of the second molecule,
ke = alViel'p (2) 1, is held fixed at the equilibrium bond length. The
Pr coordinates describing our system are the separation of the
centers of massRR, and the bond length;,. The first-order

where a factor of 1/ has been replaced by the particle number expansion of the potential ig = ra — re

density p. This replacement of L/from the single collision
partner case with a particle density corresponds to treating the V&V, + (0V/39) g (6)
system as havingL collision partners independently interacting
with the vibrationally excited molecule. In the calculations s used in the evaluation of the coupling between the initial
below, this density is taken to be unity. Since the interaction and final vibrational stated/ is taken to be the zeroth-order
between the particles is short ranged, the interaction integral potential, and {V/dg)q is the perturbationt;, which provides
the interstate coupling. The zeroth-order quantum states of the
V, = j(’) ® W (Rr)Vi(Rr)W(Rr)dRdr, (3) system Wj(r,R), are taken to be products of harmonic oscillator
vibrational wave functionspj(g), and translational wave func-

is independent of the box length after the normalization factors tions, y(R). The coupling matrix elemerst W |Ha| ;> s given

of (2/L)2 have been factored out. The rate expression, eq 2, is
also independent of the box length. The calculations treat the A

box length as infinite. In eq 3, the coordinaés the distance Vi =——— [ y* (R(@VIdg)gp(RAR  (7)
between the centers of mass of the colliding particles,raisd (2uAE)

the b_o_nd length of the molecule undergoing the vibrational \yhere the harmonic oscillator resulfg1(a)gpo(q)dgq =
transition. hl(2uAE)Y2 has been employed, wheneis the reduced mass

Equation 2 gives the rate when the system has a specific valuesy, the vibration.
for the relative momentum of the colliding molecules. The
thermally averaged rate expression is given by IIl. Results

1 pe 8M o 2 —goziom Initi_al and final quantum wave functions for_the t_ranslational
kr = pQ, fo — Viie b dp, (4) coordinate are calculated for the system described in the previous
P section. Calculations are performed with= 80 K for values
of the asymptotic kinetic energy for the initial state wave
wherep; is the asymptotic relative momentum of the colliding function between 0 and 2500 K. The integrand in eq 4 is plotted
particles before the collisiomy = (pi? +2mAE)Y2 AE is the as a function of the asymptotic kinetic energy before transition
vibrational excitation energy; = 1/KgT, Kg is Boltzmann’s in Figure 1. The maximum of this function occurs at an initial
constant, an@, = [5 exp(Api&2m)dp = Yo(2rmKgT)¥2. kinetic energy of slightly less than 700K. Higher energy
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Figure 3. (3V/3q)eyifi/(2uAE)2 is plotted versus = R — r, for an
initial kinetic energy of 700K withAE = 2273.8 K. The distance is
given in angstroms (16° m).

collisions are more likely to result in vibrational transitions (i.e.,
have larger values ¥ |), while the Boltzmann factor accounts
for the decreasing likelihood of collisions at higher energies.
The rapid growth o#;; with increasing collision energy results

Herman and Ding

quickly in the region before the turning point, resulting in a
relatively large contribution from this region. If the lower
integration limit in eq 7 is changed to the classical turning point
corresponding to relative momentum for the colliding
molecules, then the calculated rate is 102,05, compared
with the result 5.98< 10714 from the full calculation. In this
case, neglecting the contribution from the classically forbidden
regions results in a rate that is more than 8 orders of magnitude
larger than the exact quantum calculations for this model system.
Since the evaluation oWV; involves several orders of
magnitude of phase cancellation, the integration must be
accurately performed out to a distance at which the interaction
potential is small compared to the magnitude of the integral. It
is of interest to discern what features of the system potential
energy,Ve(R), and the coupling between the vibrational states,
Vin(R), determine the value of this integral, whevg(R) =
[h/(2uAE)Y3(8V/dg)e. To this end, we expante(R) and Viy-
(R) in the following form

F(R=Ae™1+Y Cx (8)

wherex = R — Ry. Since the large first peak in Figure 3 is near
the classical turning point for the incoming translational energy,
the expansion poinRy is taken to be the value @R at this
turning point. The constants, b, andC, in eq 8 are chosen so
that Fn(R) and its firstn derivatives agree with those of the
function being expandedVe(R) or Vin(R). The form of the
expansion presented in eq 8 is utilized in this work because it
has the correct value aR,, provides the correct firsh
derivatives, and decays exponentially to zero at |d&g@&his

last feature is important for the expansion of the coupling. If

in a maximum at an energy several times the thermal energy ofthe expansion of the interstate coupling did not decay to zero,
80 K. The calculated rate for this one-dimensional model system then theV integral, eq 7, would continue to oscillate rather

is 5.98x 10714 ps~L. The rate, the logarithm of which is plotted
as a function oAAE in Figure 2, is a rapidly decreasing function
of the vibration excitation energy.

Figure 3 is a plot of §V/00)eyif/(2uAE)Y2 versusr = R—-
re for an initial kinetic energy of 700K for the case wiltE =
2273.8 K. This quantity multiplied by the final state translational
wave function,yy, is the integrand for the calculation &f;.

than converge to a specific value.

Table 1 provides rate constants for various values of the order
of the expansion of the potentiah,, and the order of the
expansion of the couplingy, for the system withtAE = 2273.8
K. Fourth-order expansions for both(R) andVi(R) result in
less than a 10% error. The rate calculated using second-order
expansions differs from the exact result by only a factor of 2,

The function has a maximum on the order of 50, while the value which is generally considered a good level of accuracy for the

for Vit is 2.56 x 1074 The final state wave functionyys, is a
rapidly oscillating function with a magnitude on the order of

calculation of a transition rate for a high-frequency vibration.
These results suggest that even though the integrand iithe

one. The final state momentum near the classical turning point calculation continues to oscillate with a non-negligible magni-

for the initial state is given by = (2mAE)Y2 and the

corresponding de Broglie wavelength is 0.02 A. Phase cancel-

lation due to the rapid oscillations @f; results in more than 5

tude out to a relatively largR, it is the behavior oVg(R) and
Vin(R) near the classical turning point for the initial state
translational energy that largely determines the magnitude of

orders of magnitude decrease in the value of the integral the contribution to the rate constant from that energy.

compared with the maximum in the integrand. Small errors in
the calculation of the initial and final state wave functions or

Table 2 compares the exact quantum rate with values obtained
using the expansion of thé(R) andVi(R) for various values

in the evaluation of the integral can cause considerable errorsof AE. The results show that the errors resulting from the low-

in the result. The integrand for the energy integration, which is

order expansions become more significant/&s increases.

shown in Figure 1, is, on the other hand, a smooth, easily There is only about a 12% error when quadratic expansions are

integrated function.

employed wherAE = 1000 K, and the quartic expansions yield

Semiclassical methods often ignore the classically forbidden results with less than 1% error. WheéxE = 3500 K, the rate

regions. The classical turning point for the incoming particle is
at aboutr = 2.8 A. The large first peak in Figure 3 penetrates
significantly into the classically forbidden zone, and the
contribution from that region is important in canceling the
contribution from the allowed region. Sinags is a rapidly
oscillating function, those regions in Figure 3 where the plotted
function is changing most rapidly will provide the largest
contributions to the integral. This function is rising relatively

calculated using quadratic expansions is only about 1/3 of the
exact value. This error is reduced to about 21% when quartic
expansions are used, and it is less that 4% if sixth-order
expansions are used.

The importance of high-energy collisions in the results
obtained here suggests that the major contributions to the
relaxation in liquids might also come from regions well up on
the repulsive wall of the molecutamolecule potential. If this
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TABLE 1: Transition Rate (in ps 1) for a One-Dimensional Model System withAE = 2273.8 K for Various Values ofny and

ns

ne= ny=2 n=4 ny==~6 ny=2=8 ny =10
2 3.24x 10714 4.08x 10714 419x 10714 420x 10714 420x 10714
4 4.35x 10714 5.45x 107 5.59x 10714 5.61x 10714 5.61x 10714
6 461x 10 577x 10714 5.92x 1014 5.94x 10714 5.94x 10714
8 4.64x 10714 5.80x 10 5.96x 10714 5.97x 10714 5.97x 10714
10 4.64x 10714 5.80x 10 5.96x 10714 5.98x 1014 5.98x 1014

2The value using the exab(R) andVin(R) is 5.98 x 10714 ps2.

TABLE 2: Transition Rate (in ps ') for a One-Dimensional with the maximum value of its integrand Bt= 700K. Since
Model System with Various Values ofAE, n,, and n: the contribution to the rate at each energy is proportional to

AE n=n=w n=n=2 nmn=n=4 n=n=6 Vir?, the effect of this cancellation on the rate is the square of
1000 201x 108 1.76x 10° 200x 108 2.01lx 108 the effect on\_/if averag_ed over all energies. In the time c_Jepe_‘ndent
1500 7.65x 1011 564x 1011 7.43x 1011 7.64x 101 autocorrelation function approach, the rate expression is pro-
2000 6.45x 10713 3.91x 10 6.03x 1013 6.41x 103 portional to the Fourier transform at frequenoy= AE/h of
2500  9.26x 1012 4.56 x 1013 8.25x 1012 9.14x 1012 the force autocorrelation function. In the harmonic oscillator
3000 1.96x 107 7.79x 1077 1.65x 107" 1.92x 107 approximation, this autocorrelation function is proportional to
3500 563<107% 1.80x 107" 4.45x 10 % 5.43x 10 7 related quantity containingvo factors ofViy, so the impact of
2273.8 4.19x 10 252x 10 3.93x 10 4.16x 10 q y containintyv ints P

_ _ _ the phase cancellation should be much greater on the autorcor-
@ The case withn, = n; = o is the exact quantum calculatiohThe relation function than oiVi. This suggests that there may be

potential energW(r) = 4¢(o/r)™'2 + Ve exp(—r/ry) is employed in

the calculations at thisE. numerical advantages to a method that accounts for the phase

cancellation by numerically evaluating and then squaring it,
is the case, then the use of low-order expansions of the potentialas opposed to one that numerically evaluates a single quantity,

; i . . the Fourier transform of the autocorrelation function, which
and the coupling combined with quantum calculations of the . : .
S . . . incorporates the effect of all the phase cancellation. A similar
initial and final translational states and g may provide an - X ) e -
, : . _result is reported by Rostkier-Edelstein, Graf, and Nitzam
avenue for accurate and computationally feasible calculations

Lo . I - their analysis of numerical methods for evaluating the Fourier
of vibrational relaxation rates in liquids. The potential employed ; . .
R X : 12 : . transform of the classical foredorce autocorrelation function.
in this work is a simple—12 repulsion. This can be expected to

. . : : This Fourier transform can be expressed in terms of the square
provide a reasonable model for the interaction high on the . . .
) PR . of Fourier transform of the time dependent force on the relaxing
repulsive wall in liquids. The question of whether the low-order . . S )
. : X . .~ mode using the Wiener-Khinchin theorem, and the authors find
expansion method continues to work in regions where the liquid-

i . - : that the results based on this latter form are more reliable.

phase potential energy is more slowly varying is of interest. In o . : .

order to address this question within the context of the model . The c_ontrlbutl_on from the classm_ally for_b|dden region to the
used here, the additional potentidl, exp(—r/ry) is added to integration required for the_ evaluatlo_n gf is very S|g_n|f|cant _
the r-12 potential. The value¥e, = 50 K andr, = 5 A are and must be accuraFer |nc.luded in the calcglatlpn of this
employed. This additional potential adds a relatively slowly quantity. Neglec_t of this classical forbidden con_tnbutlon results
varying term to the short ranged, highly repulsive wall. In a rate th_at is roughly 8 orders O.f magnitude too large
Relaxation rates evaluated using this modified potential with com_pareq W'th the full quantum calculation for the model system
AE = 2273.8 K are presented in Table 2. The additional fStUd'e.d in_this WorI§. One W.Omd expect that the accurate
potential results in a slightly lower relaxation rate of 4.9 |ncIu3|on_of the classically fprbldden cqntrlbutlons to the phase
10714 compared with 5.98< 10-14 when this added potential canc_ellanon in th_e C_aIC_uIatlo_n of the time dependent_ autocor-
is not included in the calculation. The calculations using low- relation function is S|mllarly Important when the rate Is being
order expansions oV and Vi continue to provide good evaluated as the Fourier transform of this quantity. The good

approximation® to the exact relaxation rate with this augmented results obtained usm%the Im_ear_lzed semiclassical method of
potential. Geva and co-worke#% 37 would indicate that the quantum phase

cancellation is accurately accounted for in their implementation
of the local harmonic approximation in the calculation of the
Wigner transform of the force on the relaxing mode.

The results for the one-dimensional model considered in this  The results presented demonstrate that the behavior of the
work provide several insights concerning the calculation of translational potential energy,, and the interstate coupling,
vibrational relaxation rates. First, the relaxation rate for this Vi, near the turning point in the classical translational motion
system is dominated by contributions from energies that are at the energy of the initial state largely determines the magnitude
many times thermal energies. The fixed energy golden rule rate of the contribution to the rate at that energy. Calculations using
is an increasing function of energy. This increase is faster thanlow-order expansions df. and Vi, are able to provide values
the decrease in the Boltzmann factor at thermal energies, and itof the rate in good agreement with the exact calculations for
is only at the significantly higher energies that the decrease in this model. The use of fourth-order expansions results in only
the Boltzmann factor with increasing energy eventually results about a 10% error in the rate for the case with a vibrational
in the decay of the energy dependent contribution to the excitation energy corresponding te.0f second-order expan-
thermally averaged rate. sions are employed for the simple model considered, then the

Moreover, the calculations illustrate that there are several rate obtained is still within a factor of 2 of the rate from the
orders of magnitude of phase cancellation in the evaluation of full calculation in this case. These results suggest that it may
the transition matrix elemen; for a given energy. For thAE be possible to accurately simulate relaxation rates for high-
= 2273.8 K calculation, it is found that this cancellation reduces frequency vibrations by using low-order expansions for the
the transition matrix element by a factor of overi@ompared potential and coupling at classical turning points. The quantum

IV. Discussion and Conclusions
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wave function and coupling matrix element, can then be (5) Diestler, D. JChem. Phys. Lettl976 39, 39.

obtained using these expansions. This computational procedur%hy(s6)l_§‘tfr1%e7réFgGB-igSerkOWitz' VPhys. Re. Lett 1977 39, 1000;,Chem.

can be easily parallelized making simulations numerically (7) Freed, K. F.; Yeager, D. L.; Metiu, KChem. Phys. Let.977, 49,
feasible. The important aspect of this method is that the 19. _
significant phase cancellation is accurately accounted for in the _(8) Diestler, D. J.; Knapp, E. W.; Ladouceur, H. . Chem. Phys

evaluation olV;. Since the method focuses on the turning point 197?958,2;1253' E. W.: Fischer, S. B. Chem. Phys1981, 74, 89.

in the classical motion, the Monte Carlo average over configura-  (10) Kono, H.; Lin, S. H.J. Chem. Phys1983 78, 2607;1983 79,
tions in the simulation of a liquid system corresponds to the 2748.

integration over the value of the initial asymptotic momentum 19?21)205‘1%"9"?”2' R. N.; Slawsky, Z. |.; Herzfeld, K. 8. Chem. Phys
in the rate expression employed in this work. The corresponding "~ (12) Miklave, A.; Fischer, S. FJ. Chem. Phys1978 69, 281.

integrand for the one-dimensional model employed in this work,  (13) Fixman, M.J. Chem. Phys1961, 34, 369.

which is shown in Figure 1, is well suited for a Monte Carlo ggg év)\ggjgde\} ﬁgf”;hsgﬁsg??%j%gﬂ
integration. The testing of this methodology on many dimen- (16) Schweizer, K. S.; Chandler, W. Chem. Phys1982 76, 2296.

sional models and its application to realistic simulation systems  (17) Metiu, H.; Oxtoby, D. W.; Freed, K. FPhys. Re. A 1977, 15,
are topics for future work. 361.

aati ; o thi (18) Oxtoby, D. W.J. Chem. Phys1978 70, 2605.
The ap_pll_catlon of the approach considered in tl_1|s work to (19) Adelman, S. AAds. Chem. Phys1980 44, 143.
more realistic condensed phase systems would require expanding (20) Nitzan, A.; Shugard, M.; Tully, J. CI. Chem. Phys198Q 72,

the many-particle potential at appropriate “turning points” in 3972,

the classical motion. Since the potential would include the (2é)ngagchi, B.; Oxtoby, D. WJ. Chem. Phys1982 76, 2197;1982
interaction with many patrticles, an independent binary collision ’(22) Everitt, K. F.: Egorov, S. A.; Skinner, J. Chem. Phys. Let1998

model between pairs of particles is not assumed here. The23ss 115.
direction of many-particle force on the vibrational degree of  (23) Ergorov, S. A.; Skinner, J. IChem. Phys. Lettl998 293 469.

freedom is an obvious first choice for the collective degree of ézi)?QE"e”“’ K. F.; Skinner, J. L.; Ladanyi, B. M. Chem. Phy2002,

freedom. In addition, the expansion of the potential could include ~ (25) Rostkier-Edelstein, D.: Graf, P.; Nitzan, &. Chem. Phys1997
several collective degrees of freedom and low-order couplings 107, 10470.

between these, reminiscent of the instantaneous normal mode (g? g;:ggvaDjWﬁU- %he&aphéﬁtﬁlpﬁsig;d 7 70
approacH344 The work of Deng, Ladanyi, and Str&tton 2283 Schofield P”Physl.D’Re: LéttUiQGQ 4‘233': n

contributions to the Fourier transform of the forderce (29) Egelstaff, P. AAdv. Phys 1962 11, 203.
autocorrection function indicates that a single collective mode  (30) Skinner, J. L.; Park, KJ. Phys. Chem. 2001, 105 6716.

; it ; ; (31) Wang, H.; Sun, X.; Miller, W. HJ. Chem. Physl99§ 108 9726.
provides an accurate description of Fourier transform at high (32) Shi, 0.: Geva, EJ. Phys. Chem. £004 108 6109,

frequencies in many cases, although they find the influence of  (33) shi. Q.: Geva, EJ. Phys. Chem. 2003 107, 9059.
rotations on the vibrational relaxation must also be accounted (34) Shi, Q.; Geva, EJ. Phys. Chem. 2003 107, 9070.

for in the case of a triatomic with a heavier center atom and  (35) Ka, B. J.; Shi, Q.; Geva, B. Phys. Chem. 2003 109, 5527.
h liaht d at Th Iso find that the high-f (36) Ka, B. J.; Geva, EJ. Phys. Chem. 2006 110, 9555.
much ighter end atoms. They also find that the nigh-Trequency 37y kg B. J.; Geva, EJ. Phys. Chem. 2006 110, 13131.

Fourier transform in dominated by short-range interactions and  (38) Herman, M. F.J. Chem. Phys1987, 87, 4779.
that long-range dipoledipole interactions do not significantly (39) Arce, J. C.; Herman, M. RL. Chem. Phys1994 101, 7520.

contribute to it. This is similar to our numerical result that the ~ (40) Faltermeier, B.; Protz, R.; Maier, NLhem. Phys1981, 62, 377.

. . (41) Fermi, ENuclear PhysicsUniversity of Chicago Press: Chicago,
addition of the long-range potential does not change the 1g5q.
relaxation rate very much for our simple model. (42) In the calculations with the added potential, it is found that the
contribution to the rate from very low energies is not numerically accurate
when the low-order expansions are employed compared with the results
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